

Energy Storage 2030 – Framework and Preliminary Results for Lithium-ion and Lead Batteries

Patrick Balducci¹, Thomas Mosier³, Venkat Durvasulu³, Crystal Ferels¹, Nigel Becknell², Ben Shrager⁴, Hill Balliet³

DOE Storage Summit September 28, 2022

¹Argonne National Laboratory ³Idaho National Laboratory ²NanoGraf Corporation ⁴U.S. Department of Energy

Outline

Framework outline

Lead Acid Results

Li-ion Results

Synthesis

Our Objective is to Identify Portfolios of Innovations That are Efficient at Achieving LCOS Reductions

"Portfolios" are sets of interventions by DOE (e.g., specific R&D activities, demonstrations, loans for scale-up)

We are Implementing a Framework to Develop These Intervention Portfolios

Identify individual innovation opportunities

Step 1: Assess R&D trajectory status quo Step 2: Assess gaps with respect to improving technology cost/performance Step 3: Define DOE interventions that could be relevant to energy storage gaps Step 4: Assess potential impacts of DOE interventions

Assess portfolios of interventions

Step 5: Implement Monte Carlo model Step 6: Evaluate portfolios of interventions

Analyze modeled outcomes

Step 7: Conduct suitability evaluations Step 8: Report on metrics

Innovations Distilled from Interviews Used for Portfolio Analysis

Li-ion

Innovation

Innovation Category

			[Raw materials sourcing	Cathode material mining
					Domestic sourcing of Lithium
	Innovation Category	Innovation		Supply chain Advanced material development	Anode material production
					Mining permitting
	Raw materials sourcing	Mining and metallurgy	_		Co-locating manufacturing and mines
		Alloying in lead sources			Solid-state electrolyte improvements
	Supply chain	Supply chain analytics			Anode innovations
	Advance material development	Novel active material			Electrode and electrolyte innovations
		Improving paste additives -			Atomic-level cell dynamics studies
		carbon			Fundamental material research
		Improving paste additives -	Ī	Technology components	Sensor and monitoring technologies
Lood-ocid		expanders or other	Ī	Manufacturing	Foundational manufacturing R&D
Leau-aciu		Novel electrolytes			Manufacturing process scale-up
	Technology components	Re-design of standard current			Data-driven manufacturing
		collectors			improvements
		AGM-type separator			Manufacturing workforce development
		Minimizing water loss from the	Ī	Deployment	Controls to improve cycle life
		battery			Deployment policies
	Manufacturing	Advanced manufacturing for			Demonstration
		lead-acid batteries			Deployment efficiency
	Deployment	Scaling and managing the		End of life	Recycling defective cells
		energy storage system			Recycling degraded cells
		Demonstration projects			Impurities reduction technique
	End of life	Enhancing domestic recycling			Rapid battery health assessment

Lead-acid Battery Results

Some Innovation Portfolios Substantially Reduce LCOS

Achieving This Dramatic LCOS Reduction Would Require a Dramatic Improvement to Cycles

Manufacturing Innovations Required for Deep Cost Reductions but Other Innovations Yield High ROI

Significant Number of High Impact Portfolios Cost Less than \$150M

Lithium-ion Battery Results

Deepest LCOS Reductions Require Significant Intentionality

Storage Block and Cycles Key to Achieving Deepest LCOS Reductions

Deployment and Advanced Materials Are Key to Highest Impact Portfolios

Li-ion Innovation Portfolios Are Expensive, but Majority Cost Less Than \$1B

Synthesis

Lead-acid Innovation Driven by Materials and Components; Li-ion by Deployment and Materials

We're Applying Framework to Broader Set of Technologies as Part of a Report to Congress

- Report will demonstrate composition and impact of portfolio investment approach to reducing energy storage LCOS.
- Will look across Energy Storage Grand Challenge use cases.
- We would appreciate speaking to everyone in the audience with subject matter expertise on these technologies!

Technologies

- Lead-acid
- Li-ion
- Supercapacitors
- Flow batteries
- Pumped storage hydropower
- Compressed air energy storage
- Flywheels
- Sodium-ion
- Thermal
- Hydrogen

Contact information

Patrick Balducci

Backup Slides

Motivation

ESGC Technology Development Activity 2

Identify a portfolio of energy storage technologies that have an **R&D pathway** to achieve significant progress towards **ESGC cost targets by 2030**. Develop standardized metrics that facilitate technologyagnostic cost and performance evaluations.

ESGC Roadmap Figure 3

Lead-acid Battery Innovations (1-4)

Innovation Category	Innovation	Description
Raw Material Sourcing	Mining and metallurgy innovations	 Ex. hydrometallurgical processes and extracting Pb as a byproduct of other mining processes Innovations that would extend the lifetime and extraction efficiency of current, domestic Pb mines
	Alloying in lead sources	 Related to the impurity or alloy composition of primary or secondary Pb Remove harmful impurities from Pb sources or make those impurities less impactful on the battery performance
Supply chain	Supply chain analytics	 Reduce risk in the supply of critical lead-acid battery materials (lead, plastics, additives, etc.) Ex. lowering the fraction of valuable EOL lead-acid batteries that are exported or reducing the rising costs and lead times of critical materials
Technology components	Re-design of standard current collectors	 Fundamentally altering the popular grid architecture of standard lead-acid battery current collectors, such as changing: Aspect ratios/current collector thickness Design/placement of current collector tabs Current collector materials (Pb alloys or non-Pb based) Different designs such as bipolar or tubular gel construction and electrode materials necessary to improve those designs

Lead-acid Battery Innovations (5-9)

Innovation Category	Innovation	Description	
Technology components	AGM-type separator	 Ex. novel materials, coatings, and fabrication methods Minimize stratification, aid diffusion, facilitate gas transfer, maintain stack compression Tailoring to high-performance on both the positive and negative side of the battery 	
	Minimizing water loss from the battery	 Minimizing the detrimental effects of water loss or the need to add water by controlling: Positive electrode corrosion and overcharging Water diffusion through the cell casing Water loss through the venting system Catalysts for improving oxygen recombination 	
Manufacturing	Advanced manufacturing for lead-acid batteries	 Developing a manufacturing process that deviates from historically prominent methods Ex. manufacturing bipolar batteries, a Li-ion-like manufacturing process, or other processes to make lead-acid manufacturing greener 	
Advance material development	Novel active material	 Using a different lead-based material than what is currently mixed into pastes during lead-acid battery manufacturing 	
	Improving paste additives - carbon	Using high surface area carbons to improve battery performance	

Lead-acid Battery Innovations (10-14)

Innovation Category	Innovation	Description	
Advance material development	Improving paste additives - expanders or other	 Improving the performance of expanders added to the paste Developing novel synthetic additives that improve paste performance Ex. naturally occurring expanders (lignosulfonates), synthetic molecules, or inorganic materials 	
	Novel electrolytes	 Non-aqueous or other novel electrolyte compositions Fundamentally altering the electrochemical processes in the lead battery and attempt to avoid sulfation 	
Deployment	Scaling and managing the energy storage system	 Integrating and managing a large number of low-voltage batteries in a stationary energy storage system Operating a grid-connected system while improving performance and extending cycle life 	
	Demonstration projects	 Combining innovations into a demonstration project for a specific deployment Likely conducted through a consortium of companies or utility, with DOE and private entities both contributing to the project Analytic support could be supplied by national laboratories 	
End of life	Enhancing domestic recycling	 Enhancing recycling automation and domestic capacity and reducing its environmental impact Ex. hydrometallurgy for secondary lead production, recycling electrolyte, and recovering byproducts to improve the value proposition for recycling Planning for recycling of the battery during the design and manufacturing stages 	

